Communication complexity

Victor Vasiliev

March 9, 2016

1 Introduction

Traditionally, complexity theory considers the setting in which a Turing machine is given
some problem, and has to solve it within some limitation on the computational resources
(time, space, parallelism, or some other form). In communication complexity, the computa-
tional resources are typically unlimited. The premise, however, is that instead of one machine
receiving the entirety of input, there will be two (or more!) parties performing computation
(we will call them Alice and Bob), and they will receive two different parts of the input,
and y. They will have to compute some function f(z,y), and the resource we are interested
in limiting is the amount of bits they can communicate. We will refer to the procedure by
which they perform the computation as the protocol.

Definition 1. For a given function f(x,y), the deterministic communication complezity
D(f) is the number of bits used in the worst case by the smallest protocol that computes

f(@,y).

Typically, we will be interested in the case when x and y are binary strings of the same size,
and f returns either “yes” or “no”.

Theorem 2. For any f(z,y), D(f) <n+ 1.

Examples of interesting problems we are going to discuss (here, and y are n-bit strings):
1. XOR,,(z,y) — compute parity of string zy.
2. EQ,,(x,y) — determine whether x =y

3. DISJ,(z,y) — determine if there exists ¢ such that z; = y;.

DISJ is commonly known as the disjointness problem, because it represents the process in
which both Alice and Bob have elements of some set and they are trying to figre out whether
they have an element in common.

Example. XOR(z,y) can be easily computed in O(1) bits because addition modulo two is
commutative: first Alice computes parity of z, then she sends it to Bob, and Bob computes
the parity of y, which he finally XORs with the pairty of x received from Alice.

2 Monochromatic partition

One way to analyze the problem is through a matrix representing the correct answers for
each corresponding input.

Definition 3. For any f(x,y) : {0,1}" x {0,1}* — {0,1}, a communication matriz My is
a 2™ x 2"-matrixz such that each row refers to some particular value of x, each column refers
to some particular value of y, and each cell is f(x,y) for those x and y.

In this setup, each protocol 7 partitions matrix M into some fixed number of monochromatic
rectangles, that is, recatngles, containing either all 0 or all 1. Here rectangle should be
interpreted not as a geometric shape, but rather as a subset of {0, 1}" x {0, 1}" that can be
represented as a product of two sets in {0, 1}™.

Theorem 4. Any deterministic protocol m that computes f correctly using only b bits parti-
tions My into at most 2° monochromatic rectangles.

Corollary 5. D(EQ,) =n+ 1.

Proof. My is an identity matrix, meaning it has 1s across the diagonal and Os elsewhere.
No rectangle with a 1 can contain another 1, since otherwise it would also contain items off
diagonal, which are 0. Given that a seperate rectangle for Os is required, there are at least
2¢ rectangles, meaning the complexity is at least n + 1. The equality follows from the trivial
protocol. O]

3 Randomization

As usual, when a problem is hard to solve deterministically, it would make sense to ask if
the randomness would help.

Definition 6. A randomized protocol 7. decides function f(x,y) with probability 1 — e if for
any z,y € {0,1}", Pr[f(z,y) # m(x,y)] < e.

Definition 7. Function f(z,y) : {0,1}" x {0,1}" — {0,1} has randomized complezity
R.(f) = c if the optimal randomized protocol 7. decides it successfully with probability 1 — e
using at most c bits.

An important technical detail in this is that there are two ways to construct randomized
protocol. The first one is where each party has access to its own random generator (private
coins). The second one is the one when both parties can receive randomness from the sky
(public coins).

Before, we have demonstrated that EQ cannot be solved deterministically better than naive
algorithm. If we use randomized approach, however, the outlook is more positive. Let us
start with an algorithm that uses public coins.

EQ with Public Coins

The essence of this algorithm is that Alice and Bob are exchanging parities of the random
subsets of bits in the input.

1. Both Alice and Bob pick n-bit random string g.

2. Alice computes g - z (mod 2) and sends the resulting bit to Bob.

3. Bob computes g - y (mod 2), and outputs 0 if they do not match.

4. Repeat the procedure above for £ times, and return 1 if the inner products have always

matched.

If x =y, the algorithm will always succeed. If x # y, then the following will happen. There
will be some number m of bits which are not equal, and the number [of bits which will be
the part of the parity computation is binomially distributed. The probability that [is even
is at most % hence the probability that none of the attempts succeeds is 27%. This means
we can acheieve arbitrarily low error probability £ in O(—loge) bits. Note that the number
of bits is constant in the size of input.

Equivalence of Public and Private coins

The algorithm we have described above is usign the public coins model. The private coins
model is naturally more limited, but we can show that given an algorithm using public coins,
we can create an algorithm that uses private coins, albeit with some overhead.

Theorem 8. Given a protocol 7, we can construct a protocol 7P** that has an error
probability of € + 0 and uses O (logn + log (%))

We will further refer to R.(f) as the public coin complexity.

4 Distributional complexity

Another approach to introducing randomness is as follows. Assume we have many inputs,
which are distributed according to some probability distribution. Then we can analyze the
probability that a given deterministic protocol m will succeed in deciding f(x,y).

Definition 9. Function f(x,y) has distributional complexity D¥(f) = b if there exists a
protocol ™ such that Pry ., [7(z,y) # f(z,y)] <e.

Theorem 10. R.(f) = max, D(f).

n fact, it is % See http://math.stackexchange.com/a/82949

http://math.stackexchange.com/a/82949

One of the most useful theorems of communication complexity is

Theorem 11 (Kalyanasundaram and Schintger). For some p and a sufficiently small €,
D#(DISJ) = O(n).

Corollary 12. R.(DISJ) = O(n).

5 Streaming complexity

In many applications, the volume of the input is so large that it might not fit into the
memory of an individual machine. In that case, it might be reasonable to feed the input
into the machine in chunks. The streaming complexity of a problem is the smallest amount
of memory a streaming algorithm could use to solve the problem.

Example. Minimum, maximum and parity are all computable in O(1) space, since they all
require storing exactly one element of the stream.

Now, consider the problem of finding how often does the most frequent element in the stream
appear. This problem can be only solved by storing O(n) of input.

Proof. Assume there exists a streaming algorithm that uses s = o(n) bits to find the number
of times the most frequent element appears in the input. Then consider the following protocol
for solving DISJ(x, y):

1. Alice runs the streaming algorithm on x, and sends its memory (s bits) to Bob.
2. Bob resumes the algorithm from the state Alice sent him, and feeds y into the algorithm.

3. If algorithm outputs 2 or more, Bob returns 1. Otherwise, Bob returns 0.

This algorithm solves DISJ(x,y) in o(n) bits of communication. But this is impossible from
the bound we have proven on DISJ. Hence no such algorithm can exist. O]

6 VLSI

A VLSI chip can be modelled as a grid of size a x b, where there are n bits coming into the
chip, x1, 9, ... x,, and one wire coming out of the chip. Each point of the grid may have a
logic gate on it, and in our model it takes every game some fixed timestep to produce the
output based on the input.

The two parameters which determine the efficiency of the chip are the area A = ab and the
time 7" (in timesteps) it takes to compute the result. Assume that we seperate the input z
into the chip into two parts, ' and z”. Then

AT? > D(f)?

	Introduction
	Monochromatic partition
	Randomization
	Distributional complexity
	Streaming complexity
	VLSI

