
Constraint Satisfaction Problems II

Victor Vasiliev

April 6, 2016

1 MAX-SAT overview

There are two ways in which the SAT problems can be framed: satisfiability problem and
optimization problem. The optimization problem asks what is the largest number of clauses
we can satisfy. The satisfiability problem is a special case of the optimization problem: it
asks whether

OPT (φ) = n,

where n is the number of clauses in φ.

It is obvious that MAX-3SAT is NP-hard since 3SAT itself is NP-complete. 2SAT can be
solved in linear time. MAX-2SAT is known to be NP-hard. However, we can attempt to
approximate those.

We will consider a generalization of MAX-SAT which is called weighted MAX-SAT : each
clause will have a weight assigned to it. Each clause ψi has weight wi and the goal is to find
such assignment σ that

W (φ, σ) =
n∑
i=1

wiψi(σ)

This generalization has a potential to make the algorithm much more complicated, but as
we will see, since all the tools we are going to use are linear in nature, we get this weighting
basically for free. We will normalize the weights so that

n∑
i=1

wi = 1,

that is, the optimal value is 1 when the formula is satisfiable.

2 Randomized algorithm

Consider a random assignment of variables. For individua clause in k-SAT problem, the
expected value of the clause is

E [ψi] = 1− 1

2k
,

1



since the only cause in which the clause has the value of 0 is when all variable assignments
fail. By linearity of expectation, for random σ

E [W (φ, σ)] =

(
1− 1

2k

) n∑
i=1

wi = 1− 1

2k
,

This has two important implications. The first one is that there exists a variable assignment
with at least that many clauses. That is, it is always possible to satisfy at least 3/4 of
a 2SAT formula, at least 7/8 of 3SAT formula, and so on. For general SAT this gives a
1/2-approximation, since each clause has to have at least one variable.

Can we do better than that? Well, for most cases, not really:

Theorem 1 (H̊astad, 2001). For any ε > 0, MAX-k-SAT is NP-hard to approximate within
a factor better than 1− 2−k + ε.

This still leaves the question of MAX-2SAT and MAX-SAT in general. For MAX-2SAT
specifically, it is possible to reduce the problem to max-cut and use SDP to get a 0.940-
approximation (which is fairly close to the theoretical 0.954 maximum after which the prob-
lem becomes NP-hard). For MAX-SAT in general, we will see some improved techniques
below.

3 Derandomized algorithm

Let us denote the expected value of the algorithm above as E0. We know it is at least 1/2.
Then pick a variable in the formula φ, say, X1. Let φT be the φ with X1 = 1 and φF be φ
with X1 = 0. Then, observe by symmetry that

E [W (φ, σ)] =
1

2
E [W (φT , σ)] +

1

2
E [W (φF , σ)]

That is, E0 is the average of E [W (φT )] and E [W (φF )]. This means that at least one of
them has to be at least as big as E0. We can compute the expected value for both of those
values in linear time, using linearity of expectation. This way, we can fix X1 to maximize
the expected value of the resulting formula. Repeating this procedure n times, we get the
formula where the resulting weight is at least E0, meaning we have successfully derandomized
the algorithm.

4 Merging clauses

Observe that our algorithm produces many clauses in the intermediate steps which have only
one variable. We can try to be clever with those and merge them:

1. Merge all clauses which are literally the same.

2



2. If there are clauses w1Xi and w2X i and w1 > w2, merge them into (w1 − w2)Xi,
otherwise merge them into (w2 − w1)X i.

3. Renormalize the weights.

Now, consider the case where we pick every variable which has its own single-variable clause,
and assign probability h > 1

2
to it instead of 1/2. Then for each single-variable clause

E [ψ] = h

and for multivariable case (with k variables), the probability that all assignments fail is at
most hk, hence

E [ψ] ≥ 1− hk ≥ 1− h2,

meaning that we have to find the value of h which minimizes both h and 1 − h2. Because
they are both monotonic functions, we get the optimum when h = 1− h2, that is,

h =

√
5− 1

2
≈ 0.618

This improves our approximation algorithm efficiency for general MAX-SAT from 0.5.

5 ILP relaxation

We can also naturally reformulate that problem as an integer LP. Let Zj denote whether jth
clause is satisfied in the assignment, and Xi denote whether the variable is satisfied. Under
the constraints that

Zj ≤
∑
i∈ψ+

j

Xi +
∑
i∈ψ−

j

(1−Xi)

0 ≤ Xi ≤ 1

0 ≤ Zj ≤ 1

and goal
maxw · Z

we get the ILP formulation of MAX-SAT. Naturally, ILP is NP-complete, but we can do an
LP relaxation and get some vector Pi as the result. Let us randomly assign values to the
resulting vector Xi using Pi as probability that the variable is true. Then

E [1− ψ] =
∏
i∈ψ+

(1− Pi)
∏
i∈ψ−

Pi

From AM-GM inequality

E [1− ψ] ≤
(∑

i∈ψ+(1− Pi) +
∑

i∈ψ− Pi

k

)k
3



From constraints,

E [1− ψ] ≤
(
k − Zψ
k

)k
=

(
1− Zψ

k

)k
E [ψ] ≥ 1−

(
k − Zψ
k

)k
=

(
1− Zψ

k

)k
Claim 2. For Z ∈ [0, 1],

1−
(

1− Zj
k

)k
≥
(
1− (1− k−1)k

)
· Z

Let βk = 1−
(
1− 1

k

)k
and β = 1− 1

e
≈ 0.63. Note that βk ≥ β. Combining that with fact

above, we get
E [ψ] ≥ βZψ

Observe that

E [W ] ≥
∑
j

wjE [ψj] ≥ β
∑
j

wjZj ≥ βOPTLP ≥ βOPTILP

This shows that we have a β-approximation of MAX-SAT.

6 With our algorithms combined

Consider an algorithm which flips a coin in the beginning and uses random assignment or
LP relaxation depending on the outcome of the coin flip. Then

E [W ] =
1

2
E [WLP ] +

1

2
E [WR]

=
1

2
βk
∑
j

wjZj +
1

2

∑
j

wj

(
1− 1

2k

)
≥
(

1

2
βk +

1

2

(
1− 1

2k

))∑
j

wjZj

It can be shown that for all integer values of k,

1

2
βk +

1

2

(
1− 1

2k

)
≥ 3

4
,

implying that

E [W ] ≥ 3

4
OPT

Thus, combining a 0.618- and 0.63-approximation algorithms yields a 0.75-approximation
algorithms. The intuition here is as follows: random variable assignment works well in cases
when there are a lot of large clauses, and LP relaxation works well when the clauses are
mostly small. When combined together, they compliment each other.

4


	MAX-SAT overview
	Randomized algorithm
	Derandomized algorithm
	Merging clauses
	ILP relaxation
	With our algorithms combined

