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Lecture 19: Solving Linear Programs

Lecturer: Yuan Zhou Scribe: Chao Tao

1 Recap

In Leture 18, we have talked about Linear Programming (LP). LP refers to the following
problem. We are given an input of the following m constraints (inequalities):

11701 + @122 + -+ a1, < by
211 + A22T9 + - - + A9, T Sbg

KCR"= , ”" (1)
Am1T1 + Am2T2 + -+ AmnTn S bm

where a;;,b; € Q, for i € [m],j € [n]. Our goals are 1) to determine whether a solution
exists, i.e., K # () and 2) to maximize ¢’z for some ¢ € Q" such that x € K, if K # 0.
We will focus on goal 1). For goal 2), we can add one more constraint ¢’z > opt to K and
binary search for opt.

2 Solving Linear Programs

Actually, besides , LP also has other forms. Notice that for each z;, we can rewrite it to
x; = ;] —x; where x},x; > 0. Therefore, after doing this transformation, will become

the following Standard Form:
Ax <b
K= { x> 0. (2)

Let A® denote the i-th row of A. Then we can find that for each row AW, AW .z < b, =
AW g 45, = b;,s; > 0. After adding s;’s, will become the following Equational Form:

| Az, )T =b . | Az =
K—{ xZO,sZOl'e'K_{ (3)

Therefore, it suffices to solve (3)) in order to solve (L.
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Definition 1. Suppose b = £ € Q where p,q € Z. Define |b) = |p) + |q) = [logy |p[] +
[log; |q[]-

Theorem 1. Given K C R" = { Ai 28 et L=1[A) 4+ |b) = > 5 laij) + 32, [bs) be the

size of input. If K # 0, there exists x € K such that |x) = poly(L).

Proof. 1f we consider the geometric meanings of our constraints, then the set of solutions for
Ax = b is an affine linear subspace in R". Suppose its dimension is m. We will prove this
theorem via mathematical induction on m.

If m = 0, K is a single point and Az = b gives a solution z in K, which can be found in
polynomial time by Gaussian Elimination. And this proves that |z) = poly(L). If m = 1,
Ax = b defines a line. The line can’t be parallel to all hyperplanes defined by x; = 0. It

means that there exists a i € [n] such that { A;‘ i 0 gives a solution = with |z) = poly(L).
If m =2, Az = b defines a 2-dimensional hyperplane. Therefore, there exists i € [n] such
that z; = 0 intersects with the plane. And A;' i g defines a line. And we can use former
approach when m = 1 to find a solution = with |z) = poly(L). Generally, for dimension
m > 2, we can reduce it to the case when dimension is m — 1. O
Ax =b : .
Corollary 2. Let K C R" = a0 If K # 0, there exists a bounding box B = {x :
Vi, 0 < z; < B;} such that K N B # 0 with |B) =), |B;) = poly(L).
.. S . Az <b
Definition 2. LP’is the problem that given K C R" = v >0 0 0Ur goal changes to the

following: if vol(K) >V, then output x € K where V = 27PWL) otherwise output nothing.

Theorem 3. If we can solve LP’ in polynomial time, we can also solve LP in polynomial
time.

Remark 3.1. LP’is a more relaxed (easier) task than LP.

Proof Sketch. If K = (), let y be the distance from {z : Ax = b} to {z > 0}. One can show
that ¢ > 27PWU) = v Let K/ = {x: —y < Ar — b < 7,2 > 0}. We will get K’ = .

If K # (0, K’ has volume at least (QPOY%)” = 27PW(L) - Therefore, if LP’ is solvable in
polynomial time, we can relax K to K’. After that, we can trigger the LP’ solver.

Here is a geometric view in R2.
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Figure 1: A geometric view in R?

2.1 The Ellipsoid Method for LP

In this subsection, we will introduce a concrete method for solving LP. The high level idea
is that we maintain an ellipsoid that contains K. We can assume vol(K) > 2-poly(L) — 1/ by
Theorem [3] Here is the algorithm.

Algorithm 1 The Ellipsoid Algorithm

1:

©

10:
11:

Ax <b
x>0
Initialization: Let Ej be the smallest ellipsoid containing the bounding box B defined
in Corollary [2] Set i = 1.
while TRUE do
Let x be the center of E;_;.
if x € K then
Output: z.
else
Find an arbitrary linear constrain that is violated namely a -z < b. Let E; be the
smallest ellipsoid containing F; 1 N {z : a-x < b}.
if vol(E;) <V then
Output: NO SOLLUTION.
=1+ 1.

Input: K C R" =

The following graph gives a geometric view of picking Fj.
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Figure 2: A geometric view of picking E

If a solution is returned, it must be a feasible solution of K. If NO SOLLUTION returned,
vol(K) must be < V = 27P°W(5) gince K C E; for any i. Therefore, we only need to bound
the number of iterations performed.

Claim 4. For everyi=1,2,3,..., U:lo(léEi)l) <1— 5.

Proof. Since every ellipsoid can be obtained via invertible linear transformations from a
unit ball, and the volume is preserved upon a scaling factor (the determinant of the linear
transformation matrix), we can assume w.l.o.g. that £;_; is the unit ball.

Now the worst case for the separating hyperplane is to go through the origin. Assume w.l.o.g.
that it is z; > 0.

Let E; be centered at (¢,0,...,0) (¢t < 1/2). Let the semi-axis along x; be (1 —t) and
semi-axis along other directions be s, i.e. E; satisfies the following equation:

(x1—1) 3 7

+2 442 <
S S

Here is the geometric view of above procedure.
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Figure 3: A geometric view of computing E;

From this inequality, we can get s> > { 1 2t . Set 2 = U :?: and t = % We have
vol(E;) .
-  ~ 7  — 1 _ t L
'UOl(El;l) ( ) s

) <%>(n—1>/z -
() )

() (5)

2 1
€4n(n 1) > e 2n

_3
e 8n

IN

1
<1-——.
3n

In general, if E; is not the unit ball, let o be the invertible linear transformation such that
o(unit ball) = E;. Let det(o) be the determinant of the matrix associated with o. Let
a’ -z <V be the half-space obtained by c7!({a -z < b}). Let E! be the smallest ellipsoid
containing unit ball N {a’ - x < ¥'}. By previous discussion:

vol(EY) 1 1

vol (unit ball) — 3n’
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Let E; = o(E!). We know that E; contains E;_1 N {a -2 < b} since o is bijective. Finally,
we will have

vol(Ej) ~ det(o) - vol(E;) 1 1
vol(unit ball) — det(c) - vol(unit ball) — 3n’

Claim 5. The Ellipsoid Algorithm terminates within poly(L) iterations.

Proof. Suppose the algorithm does not terminate after ¢ iterations. Then we must have
vol(E;) >V = 27PN Also by selection of Ey, we have vol(Ep) < 20 . yol(B) < 2polv(L),
Further by claim % < (1 — Sin)l Therefore,

_ log(vol(Ey)/vol ()

T log(1-g)

< O(n) - log(2Po¥ () jo=pely(L)
= O(n) - poly(L)

= poly(L).

With above argument, we will get this algorithm terminates within poly(L) iterations. [J
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