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1 Recap

In Leture 18, we have talked about Linear Programming (LP). LP refers to the following
problem. We are given an input of the following m constraints (inequalities):

K ⊂ Rn =


a11x1 + a12x2 + · · ·+ a1nxn ≤ b1
a21x1 + a22x2 + · · ·+ a2nxn ≤ b2

...
am1x1 + am2x2 + · · ·+ amnxn≤ bm

(1)

where aij, bi ∈ Q, for i ∈ [m], j ∈ [n]. Our goals are 1) to determine whether a solution
exists, i.e., K 6= ∅ and 2) to maximize cTx for some c ∈ Qn such that x ∈ K, if K 6= ∅.
We will focus on goal 1). For goal 2), we can add one more constraint cTx ≥ opt to K and
binary search for opt.

2 Solving Linear Programs

Actually, besides (1), LP also has other forms. Notice that for each xi, we can rewrite it to
xi = x+i − x−i where x+i , x

−
i ≥ 0. Therefore, after doing this transformation, (1) will become

the following Standard Form:

K =

{
Ax ≤ b
x ≥ 0.

(2)

Let A(i) denote the i-th row of A. Then we can find that for each row A(i), A(i) · x ≤ bi ⇔
A(i) · x+ si = bi, si ≥ 0. After adding si’s, (2) will become the following Equational Form:

K =

{
A′(x, s)T = b
x ≥ 0, s ≥ 0

i.e. K =

{
Ax = b
x ≥ 0

(3)

Therefore, it suffices to solve (3) in order to solve (1).
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Definition 1. Suppose b = p
q
∈ Q where p, q ∈ Z. Define |b〉 = |p〉 + |q〉 = dlog2 |p|e +

dlog2 |q|e.

Theorem 1. Given K ⊂ Rn =

{
Ax = b
x ≥ 0

, let L = |A〉 + |b〉 =
∑

ij |aij〉 +
∑

i |bi〉 be the

size of input. If K 6= ∅, there exists x ∈ K such that |x〉 = poly(L).

Proof. If we consider the geometric meanings of our constraints, then the set of solutions for
Ax = b is an affine linear subspace in Rn. Suppose its dimension is m. We will prove this
theorem via mathematical induction on m.

If m = 0, K is a single point and Ax = b gives a solution x in K, which can be found in
polynomial time by Gaussian Elimination. And this proves that |x〉 = poly(L). If m = 1,
Ax = b defines a line. The line can’t be parallel to all hyperplanes defined by xi = 0. It

means that there exists a i ∈ [n] such that

{
Ax = b
xi = 0

gives a solution x with |x〉 = poly(L).

If m = 2, Ax = b defines a 2-dimensional hyperplane. Therefore, there exists i ∈ [n] such

that xi = 0 intersects with the plane. And

{
Ax = b
xi = 0

defines a line. And we can use former

approach when m = 1 to find a solution x with |x〉 = poly(L). Generally, for dimension
m > 2, we can reduce it to the case when dimension is m− 1.

Corollary 2. Let K ⊂ Rn =

{
Ax = b
x ≥ 0

. If K 6= ∅, there exists a bounding box B = {x :

∀i, 0 ≤ xi ≤ Bi} such that K ∩B 6= ∅ with |B〉 =
∑

i |Bi〉 = poly(L).

Definition 2. LP’ is the problem that given K ⊂ Rn =

{
Ax ≤ b
xi ≥ 0

, our goal changes to the

following: if vol(K) ≥ V , then output x ∈ K where V = 2−poly(L) otherwise output nothing.

Theorem 3. If we can solve LP’ in polynomial time, we can also solve LP in polynomial
time.

Remark 3.1. LP’ is a more relaxed (easier) task than LP.

Proof Sketch. If K = ∅, let γ be the distance from {x : Ax = b} to {x ≥ 0}. One can show
that γ ≥ 2−poly(L) = γ0. Let K ′ = {x : −γ0 ≤ Ax− b ≤ γ0, x ≥ 0}. We will get K ′ = ∅.

If K 6= ∅, K ′ has volume at least
(

γ0
2poly(L)

)n
= 2−poly(L). Therefore, if LP’ is solvable in

polynomial time, we can relax K to K ′. After that, we can trigger the LP’ solver.

Here is a geometric view in R2.



Lecture 19: Solving Linear Programs 3

(a) K = ∅ (b) K 6= ∅

Figure 1: A geometric view in R2

2.1 The Ellipsoid Method for LP

In this subsection, we will introduce a concrete method for solving LP. The high level idea
is that we maintain an ellipsoid that contains K. We can assume vol(K) ≥ 2−poly(L) = V by
Theorem 3. Here is the algorithm.

Algorithm 1 The Ellipsoid Algorithm

1: Input: K ⊂ Rn =

{
Ax ≤ b
x ≥ 0

.

2: Initialization: Let E0 be the smallest ellipsoid containing the bounding box B defined
in Corollary 2. Set i = 1.

3: while TRUE do
4: Let x be the center of Ei−1.
5: if x ∈ K then
6: Output: x.
7: else
8: Find an arbitrary linear constrain that is violated namely a ·x ≤ b. Let Ei be the

smallest ellipsoid containing Ei−1 ∩ {x : a · x ≤ b}.
9: if vol(Ei) < V then
10: Output: NO SOLLUTION.

11: i = i+ 1.

The following graph gives a geometric view of picking E1.
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Figure 2: A geometric view of picking E1

If a solution is returned, it must be a feasible solution of K. If NO SOLLUTION returned,
vol(K) must be < V = 2−poly(L) since K ⊂ Ei for any i. Therefore, we only need to bound
the number of iterations performed.

Claim 4. For every i = 1, 2, 3, . . . , vol(Ei)
vol(Ei−1)

≤ 1− 1
3n

.

Proof. Since every ellipsoid can be obtained via invertible linear transformations from a
unit ball, and the volume is preserved upon a scaling factor (the determinant of the linear
transformation matrix), we can assume w.l.o.g. that Ei−1 is the unit ball.

Now the worst case for the separating hyperplane is to go through the origin. Assume w.l.o.g.
that it is x1 ≥ 0.

Let Ei be centered at (t, 0, . . . , 0) (t < 1/2). Let the semi-axis along x1 be (1 − t) and
semi-axis along other directions be s, i.e. Ei satisfies the following equation:

(x1 − t)2

(1− t)2
+
x22
s2

+ · · ·+ x2n
s2
≤ 1.

To contain the half ball Ei−1 ∩ {x : x1 ≥ 0} in Ei, we only need (0, 1, 0, . . . , 0) ∈ Ei−1, i.e.

t2

(1− t)2
+

1

s2
≤ 1.

Here is the geometric view of above procedure.
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Figure 3: A geometric view of computing Ei

From this inequality, we can get s2 ≥ (1−t)2
1−2t . Set s2 = (1−t)2

1−2t and t = 1
2n

. We have

vol(Ei)

vol(Ei−1)
= (1− t) · sn−1

=

(
(1− t)2

1− 2t

)(n−1)/2

(1− t)

=

(
1− 1/n+ 1/(4n2)

1− 1/n

)(n−1)/2(
1− 1

2n

)
=

(
1 +

1

4n(n− 1)

)(n−1)/2(
1− 1

2n

)
≤
(
e

1
4n(n−1)

)(n−1)/2
e−

1
2n

= e−
3
8n

≤ 1− 1

3n
.

In general, if Ei is not the unit ball, let σ be the invertible linear transformation such that
σ(unit ball) = Ei. Let det(σ) be the determinant of the matrix associated with σ. Let
a′ · x ≤ b′ be the half-space obtained by σ−1({a · x ≤ b}). Let E ′i be the smallest ellipsoid
containing unit ball ∩ {a′ · x ≤ b′}. By previous discussion:

vol(E ′i)

vol(unit ball)
≤ 1− 1

3n
.
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Let Ei = σ(E ′i). We know that Ei contains Ei−1 ∩ {a · x ≤ b} since σ is bijective. Finally,
we will have

vol(E ′i)

vol(unit ball)
=

det(σ) · vol(E ′i)
det(σ) · vol(unit ball)

≤ 1− 1

3n
.

Claim 5. The Ellipsoid Algorithm terminates within poly(L) iterations.

Proof. Suppose the algorithm does not terminate after i iterations. Then we must have
vol(Ei) ≥ V = 2−poly(L). Also by selection of E0, we have vol(E0) ≤ 2O(n) · vol(B) ≤ 2poly(L).

Further by claim 4, vol(Ei)
vol(E0)

≤
(
1− 1

3n

)i
. Therefore,

i ≤ log(vol(Ei)/vol(E0))

log
(
1− 1

3n

)
≤ O(n) · log(2poly(L)/2−poly(L))

= O(n) · poly(L)

= poly(L).

With above argument, we will get this algorithm terminates within poly(L) iterations.
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