CSCI-B609: A Theorist's Toolkit, Fall 2016

Nov 3

Lecture 19: Solving Linear Programs

Lecturer: Yuan Zhou Scribe: Chao Tao

1 Recap

In Leture 18, we have talked about **Linear Programming (LP)**. LP refers to the following problem. We are given an input of the following m constraints (inequalities):

$$K \subset \mathbb{R}^n = \begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n & \leq b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n & \leq b_2 \\ & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \leq b_m \end{cases}$$
(1)

where $a_{ij}, b_i \in \mathbb{Q}$, for $i \in [m], j \in [n]$. Our goals are 1) to determine whether a solution exists, i.e., $K \neq \emptyset$ and 2) to maximize $c^T x$ for some $c \in \mathbb{Q}^n$ such that $x \in K$, if $K \neq \emptyset$. We will focus on goal 1). For goal 2), we can add one more constraint $c^T x \geq \text{opt}$ to K and binary search for opt.

2 Solving Linear Programs

Actually, besides (1), LP also has other forms. Notice that for each x_i , we can rewrite it to $x_i = x_i^+ - x_i^-$ where $x_i^+, x_i^- \ge 0$. Therefore, after doing this transformation, (1) will become the following **Standard Form**:

$$K = \begin{cases} Ax \le b \\ x \ge 0. \end{cases} \tag{2}$$

Let $A^{(i)}$ denote the *i*-th row of A. Then we can find that for each row $A^{(i)}$, $A^{(i)} \cdot x \leq b_i \Leftrightarrow A^{(i)} \cdot x + s_i = b_i, s_i \geq 0$. After adding s_i 's, (2) will become the following **Equational Form**:

$$K = \begin{cases} A'(x,s)^T = b \\ x \ge 0, s \ge 0 \end{cases} \text{ i.e. } K = \begin{cases} Ax = b \\ x \ge 0 \end{cases}$$
 (3)

Therefore, it suffices to solve (3) in order to solve (1).

Definition 1. Suppose $b = \frac{p}{q} \in \mathbb{Q}$ where $p, q \in \mathbb{Z}$. Define $|b\rangle = |p\rangle + |q\rangle = \lceil \log_2 |p| \rceil + \lceil \log_2 |q| \rceil$.

Theorem 1. Given $K \subset \mathbb{R}^n = \begin{cases} Ax = b \\ x \geq 0 \end{cases}$, let $L = |A\rangle + |b\rangle = \sum_{ij} |a_{ij}\rangle + \sum_i |b_i\rangle$ be the size of input. If $K \neq \emptyset$, there exists $x \in K$ such that $|x\rangle = poly(L)$.

Proof. If we consider the geometric meanings of our constraints, then the set of solutions for Ax = b is an affine linear subspace in \mathbb{R}^n . Suppose its dimension is m. We will prove this theorem via mathematical induction on m.

If m=0, K is a single point and Ax=b gives a solution x in K, which can be found in polynomial time by Gaussian Elimination. And this proves that $|x\rangle=\operatorname{poly}(L)$. If m=1, Ax=b defines a line. The line can't be parallel to all hyperplanes defined by $x_i=0$. It means that there exists a $i\in[n]$ such that $\left\{ \begin{array}{l} Ax=b\\ x_i=0 \end{array} \right\}$ gives a solution x with $|x\rangle=\operatorname{poly}(L)$. If m=2, Ax=b defines a 2-dimensional hyperplane. Therefore, there exists $i\in[n]$ such that $x_i=0$ intersects with the plane. And $\left\{ \begin{array}{l} Ax=b\\ x_i=0 \end{array} \right\}$ defines a line. And we can use former approach when m=1 to find a solution x with $|x\rangle=\operatorname{poly}(L)$. Generally, for dimension m>2, we can reduce it to the case when dimension is m-1.

Corollary 2. Let $K \subset \mathbb{R}^n = \begin{cases} Ax = b \\ x \geq 0 \end{cases}$. If $K \neq \emptyset$, there exists a bounding box $B = \{x : \forall i, 0 \leq x_i \leq B_i\}$ such that $K \cap B \neq \emptyset$ with $|B\rangle = \sum_i |B_i\rangle = poly(L)$.

Definition 2. LP' is the problem that given $K \subset \mathbb{R}^n = \begin{cases} Ax \leq b \\ x_i \geq 0 \end{cases}$, our goal changes to the following: if $vol(K) \geq V$, then output $x \in K$ where $V = 2^{-poly(L)}$ otherwise output nothing.

Theorem 3. If we can solve LP' in polynomial time, we can also solve LP in polynomial time.

Remark 3.1. LP' is a more relaxed (easier) task than LP.

Proof Sketch. If $K = \emptyset$, let γ be the distance from $\{x : Ax = b\}$ to $\{x \ge 0\}$. One can show that $\gamma \ge 2^{-\text{poly}(L)} = \gamma_0$. Let $K' = \{x : -\gamma_0 \le Ax - b \le \gamma_0, x \ge 0\}$. We will get $K' = \emptyset$.

If $K \neq \emptyset$, K' has volume at least $\left(\frac{\gamma_0}{2^{\text{poly}(L)}}\right)^n = 2^{-\text{poly}(L)}$. Therefore, if LP' is solvable in polynomial time, we can relax K to K'. After that, we can trigger the LP' solver.

Here is a geometric view in \mathbb{R}^2 .

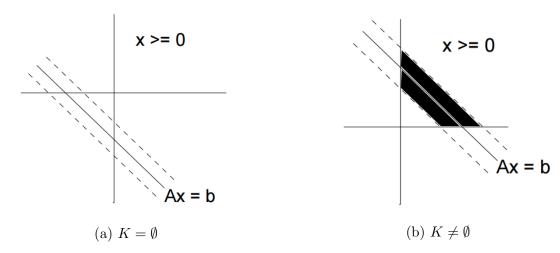


Figure 1: A geometric view in \mathbb{R}^2

2.1 The Ellipsoid Method for LP

In this subsection, we will introduce a concrete method for solving LP. The high level idea is that we maintain an ellipsoid that contains K. We can assume $vol(K) \geq 2^{-\text{poly}(L)} = V$ by Theorem 3. Here is the algorithm.

Algorithm 1 The Ellipsoid Algorithm

- 1: **Input:** $K \subset \mathbb{R}^n = \left\{ \begin{array}{c} Ax \leq b \\ x \geq 0 \end{array} \right.$
- 2: **Initialization:** Let E_0 be the smallest ellipsoid containing the bounding box B defined in Corollary 2. Set i = 1.
- 3: while TRUE do
- 4: Let x be the center of E_{i-1} .
- 5: **if** $x \in K$ **then**
- 6: Output: x.
- 7: else
- 8: Find an arbitrary linear constrain that is violated namely $a \cdot x \leq b$. Let E_i be the smallest ellipsoid containing $E_{i-1} \cap \{x : a \cdot x \leq b\}$.
- 9: if $vol(E_i) < V$ then
- 10: Output: NO SOLLUTION.
- 11: i = i + 1.

The following graph gives a geometric view of picking E_1 .

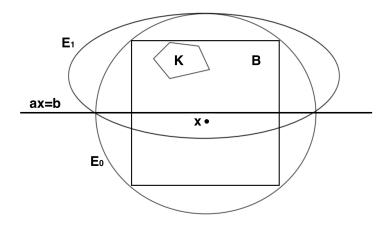


Figure 2: A geometric view of picking E_1

If a solution is returned, it must be a feasible solution of K. If NO SOLLUTION returned, vol(K) must be $\langle V = 2^{-\text{poly}(L)} \rangle$ since $K \subset E_i$ for any i. Therefore, we only need to bound the number of iterations performed.

Claim 4. For every
$$i = 1, 2, 3, ..., \frac{vol(E_i)}{vol(E_{i-1})} \le 1 - \frac{1}{3n}$$
.

Proof. Since every ellipsoid can be obtained via invertible linear transformations from a unit ball, and the volume is preserved upon a scaling factor (the determinant of the linear transformation matrix), we can assume w.l.o.g. that E_{i-1} is the unit ball.

Now the worst case for the separating hyperplane is to go through the origin. Assume w.l.o.g. that it is $x_1 \geq 0$.

Let E_i be centered at (t, 0, ..., 0) (t < 1/2). Let the semi-axis along x_1 be (1 - t) and semi-axis along other directions be s, i.e. E_i satisfies the following equation:

$$\frac{(x_1-t)^2}{(1-t)^2} + \frac{x_2^2}{s^2} + \dots + \frac{x_n^2}{s^2} \le 1.$$

To contain the half ball $E_{i-1} \cap \{x : x_1 \geq 0\}$ in E_i , we only need $(0, 1, 0, \dots, 0) \in E_{i-1}$, i.e.

$$\frac{t^2}{(1-t)^2} + \frac{1}{s^2} \le 1.$$

Here is the geometric view of above procedure.

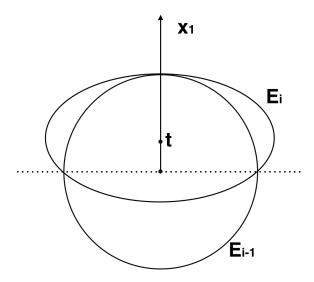


Figure 3: A geometric view of computing E_i

From this inequality, we can get $s^2 \ge \frac{(1-t)^2}{1-2t}$. Set $s^2 = \frac{(1-t)^2}{1-2t}$ and $t = \frac{1}{2n}$. We have

$$\frac{vol(E_i)}{vol(E_{i-1})} = (1-t) \cdot s^{n-1}$$

$$= \left(\frac{(1-t)^2}{1-2t}\right)^{(n-1)/2} (1-t)$$

$$= \left(\frac{1-1/n+1/(4n^2)}{1-1/n}\right)^{(n-1)/2} \left(1-\frac{1}{2n}\right)$$

$$= \left(1+\frac{1}{4n(n-1)}\right)^{(n-1)/2} \left(1-\frac{1}{2n}\right)$$

$$\leq \left(e^{\frac{1}{4n(n-1)}}\right)^{(n-1)/2} e^{-\frac{1}{2n}}$$

$$= e^{-\frac{3}{8n}}$$

$$\leq 1-\frac{1}{3n}.$$

In general, if E_i is not the unit ball, let σ be the invertible linear transformation such that $\sigma(\text{unit ball}) = E_i$. Let $\det(\sigma)$ be the determinant of the matrix associated with σ . Let $a' \cdot x \leq b'$ be the half-space obtained by $\sigma^{-1}(\{a \cdot x \leq b\})$. Let E'_i be the smallest ellipsoid containing unit ball $\cap \{a' \cdot x \leq b'\}$. By previous discussion:

$$\frac{vol(E_i')}{vol(\text{unit ball})} \le 1 - \frac{1}{3n}.$$

Let $E_i = \sigma(E_i')$. We know that E_i contains $E_{i-1} \cap \{a \cdot x \leq b\}$ since σ is bijective. Finally, we will have

$$\frac{vol(E_i')}{vol(\text{unit ball})} = \frac{\det(\sigma) \cdot vol(E_i')}{\det(\sigma) \cdot vol(\text{unit ball})} \le 1 - \frac{1}{3n}.$$

Claim 5. The Ellipsoid Algorithm terminates within poly(L) iterations.

Proof. Suppose the algorithm does not terminate after i iterations. Then we must have $vol(E_i) \geq V = 2^{-\text{poly}(L)}$. Also by selection of E_0 , we have $vol(E_0) \leq 2^{O(n)} \cdot vol(B) \leq 2^{\text{poly}(L)}$. Further by claim 4, $\frac{vol(E_i)}{vol(E_0)} \leq \left(1 - \frac{1}{3n}\right)^i$. Therefore,

$$i \leq \frac{\log(vol(E_i)/vol(E_0))}{\log(1 - \frac{1}{3n})}$$

$$\leq O(n) \cdot \log(2^{\text{poly}(L)}/2^{-\text{poly}(L)})$$

$$= O(n) \cdot \text{poly}(L)$$

$$= \text{poly}(L).$$

With above argument, we will get this algorithm terminates within poly(L) iterations. \square

Reference

- a) http://www.cs.cmu.edu/~odonnell/toolkit13/lecture13.pdf
- b) https://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15859-f11/www/notes/lecture08.pdf